中商国通蓄电池代理报价2V425AH
中商国通蓄电池注意:
1.如浮动充电电压偏离敝公司的指定值,将产生以下不良影响。
2.长时间偏高时(过充电):液体减少、加速正极板栅腐蚀、缩短寿命。
3.长时间偏低时(充电不足):加速正极板栅腐蚀和负极活物质劣化,缩短寿命,不能满足负载的使用要求。
4.在使用初期,浮充电时各个电池的电压差别可能稍大一些,但随着充电的进行会逐渐缩小。
中商国通蓄电池日常维护与操作时的注意事项
1.进行维护检修时,应使用绝缘手套绝缘鞋等保护用品。
2.清扫蓄电池时,应使用湿布等。
3.如用干布或掸子进行清扫,产生的静电有引火爆炸的危险。
4.清扫合成树脂电池壳时,不应使用香蕉水、汽油、挥发油等有机溶剂或洗涤剂,否则有可能使电池壳破裂,导致电解液漏出。
5.电压及外观应定期检查,螺栓螺帽也要定期拧紧。如不进行定期检查,有引起蓄电池破损及引火爆炸的危险。
6.阀控式密封铅酸蓄电池的安全阀在排气栓下面。禁止拆下安全阀和排气栓。否则有造成蓄电池性能、寿命劣化、破损的危险。
中商国通蓄电池特点:
1. 密封结构(防泄露),不漏液,不产生酸雾,使用期间无需加酸加水;
2. 高效率气体吸收,密封反应效率大于98%;
3. 自放电率极低—静置期长;
4. 深循环使用寿命长;
5. 运行温度范围宽。
6. 前置端子牢固,安全,易安装和易维护;
7. 标准安装设计,便于采用标准19' 和23' 电池柜,窄而高的结构使用其具有良好的散热性能;
8. 12年浮充设计寿命;
9. 独特的提手结构,方便搬运和安装。
中商国通蓄电池代理报价
产品特性:
1、 免补水、维护简单
采用特殊设计克服了电池在充电过程中电解失水的现象,电池在使用过程中电液体积和比重几乎没有变化,因此电池在使用寿命期间完全无需补水,维护简单。
2、 密封安全、安装简单
电池内没有流动的电液,电池立式、侧卧安装使用均可,无电液渗漏之患,而且在正常充电过程中电池不会产生酸雾。因此可将电池安装在办公室或配套设备房内,而无需另建专用电池房,降低工程造价。
3、 使用寿命长
采用了耐腐性良好的铅钙合金板栅,在25℃的环境温度下,正常浮充寿命可达10年以上。
4、 高功率放电性能好
采用了内阻值很小的优质极板和玻纤隔板,而且装配较紧,使得电池内阻极小。在-40℃~60℃温度范围内进行大电流放电,其输出功率比常规电池可高出15%左右。
5、 安装使用方便
电池出厂时已经完全充电,用户拿到电池后即可安装投入使用。
应用范围:
⑴ 电话交换机 ⑺ 办公自动化系统
⑵ 电器设备、医疗设备及仪器仪表 ⑻ 无线电通讯系统
⑶ 计算机不间断电源 ⑼ 应急照明
⑷ 输变电站、开关控制和事故照明 ⑽ 便携式电器及采矿系统
⑸ 消防、安全及报警监测 ⑾ 交通及航标信号灯
⑹ 汽车电池及船用起动
中商国通蓄电池行业资讯
怎样降低太阳能电池硅用量
高纯度的硅占据了传统太阳能电池阵列总成本的40%,因此研究人员长久以来一直在寻找可最大化太阳能电池输出功率,同时降低硅用量的途径。现在,麻省理工学院(MIT)的研究团队找到了一种可降低硅厚度的新途径,可在保持电池高效的基础上,最高变薄90%,从而降低薄膜太阳能电池的制造成本。相关研究报告发表在近期出版的《纳米快报》杂志上。
该校机械工程系的研究人员称,这一途径的秘密在于蚀刻在硅表面的微型倒金字塔图案。他们使用了两束重叠的激光束,以便在沉积于硅之上的光刻胶的表面生成特别的微小刻痕。经过几个中间步骤后,氢氧化钾可溶解未被光刻胶覆盖的表面部分,从而在材料表面产生希望获得的金字塔图案。这些微小的刻痕,每个都不足百万分之一米,却能够像厚度为自身30倍的固体硅表面一样有效地捕获光线。这种可有效提升薄膜 太阳能电池效能的新方法有望作用于任意的硅基电池。
科学家表示,如果能够大幅降低太阳能电池中硅的用量,就能显着降低电池的生产成本。但问题是,当电池被打造得很薄时,其吸收阳光的能力将随之降低。不过,新方法却能克服这一问题。被研究小组称为“倒转纳米金字塔”的表面刻痕,能大大增加光的吸收量,而表面面积只会增加70%,从而限制了表面复合现象的发生。表面复合是指半导体少数载流子在表面消失的现象。半导体表面具有很强的复合少数载流子的作用,同时也使得半导体表面对外界的因素很敏感,这也是造成半导体器件性能受到表面影响很大的根本原因。
基于新方法获得的10微米厚晶体硅能够达到和30倍厚的传统硅片近似的光吸收量。这不仅能够减少太阳能电池中昂贵的高纯度硅用量,还能减轻电池的重量,并因此节约所需的电池用料,有效降低薄膜太阳能电池的材料成本和安装成本。此外,新技术所使用的设备和材料也是现有硅芯片处理标准零件,因此无需更新制造设备,从而使制造的难度大幅降低,更加便于实施和操作。
迄今为止,研究团队只进行了制造新型太阳能电池的第一步,即基于硅片生产了具有图案的表面,并借助俘获的光线证实了它的效能提升,下一步则需要增加组件以生产真实的光伏电池,并证明它的能效可与传统太阳能电池相媲美。现今最佳的商用硅基太阳能电池的转化效率为24%,而科学家期望新途径能够实现约为20%的能量转换效率,但这仍需进一步的实验进行检验。如果一切顺利,新系统可在不远的未来实现商用化,制造出更经济的薄膜太阳能电池,而超薄的设计也将使其应用范围更加广泛。